US ERA ARCHIVE DOCUMENT

With Contributions From...

- Sonoma Technology, Inc.
 - Hilary Minor, Adam Pasch
- RTI International
 - Jeffrey Nichol, James Flanagan, Frank Weber, Karin Ford
- Maricopa County Health Department
 - Ben Davis and colleagues
- Washington University in St. Louis
 - Varun Yadav, Li Du and Neil Feinberg

This Project in Context

- Not an EPA STAR project
- Funded by USEPA Office of Air Quality Planning and Standards (OAQPS)
- Focus on chemical analysis and sampling methods for a coarse PM speciation network

Motivation

- USEPA monitoring rule for thoracic coarse particles (2006)
 - Rule called for PM coarse (PMc, or PM_{10-2.5}) speciation monitors at NCore sites by January 2011
- USEPA monitoring rule in 2012 revoked PM coarse requirement pending results/recommendations from this pilot study
- Before deploying the PMc speciation network, must assess:
 - Sample collection methods
 - Speciation analysis methods

Study Objectives

- Analysis methods
 - PM_{2.5} Chemical Speciation Network protocols, perhaps with modifications
- Target analyte list
- Sampling methods
 - FRM by difference (PM₁₀ FRM minus PM_{2.5} FRM)
 - Dichotomous sampler (dichot)
- Field operations experience
- Other insights from data analysis
 - e.g. mass reconstruction, climatology

Pilot Study Design

- May 2010 May 2011
- Phoenix and St. Louis
- Filter-based sampling with laboratory chemical analysis
 - 1-in-3 day sampling, ~50% of samples archived
 - Operationally a 1-in-6 day data set
 - Filter sandwiches
 - Quartz-Quartz
 - Teflon-Nylon

Pilot Study Design (con't)

 Speciation generally following the PM_{2.5} Chemical Speciation Network (CSN) protocols

- Subset of samples analyzed for:
 - Carbonate by TOA with acidification
 - Elements by ICP-MS
- Modest additional analyses for:
 - Biomarkers (proteins, (1,3)-β-D-glucans, endotoxins)
 - Organic speciation by GC/MS

Measurements Platform

- Hardware at each site
 - Two sequential dichotomous samplers (Thermo 2025D)
 - One sequential PM_{2.5} FRM (Thermo 2025)
 - One sequential PM₁₀ FRM (Thermo 2025)
 - One MOUDI cascade impactor (MSP)
 - One dichotomous FDMS-TEOM (Thermo 1405-DF)
- Different filter combinations placed in samplers to address specific questions, e.g.
 - Dichot with Teflon/Nylon, dichot with Quartz/Quartz
 - Mass balance closure
 - Both dichots with Teflon/Nylon or Quartz/Quartz
 - Collocated precision

Dichotomous Sampler (slide courtesy RTI)

10% of fine particles are in the minor (coarse particle) flow stream; must correct for fine particle intrusion

East St. Louis

East St. Louis

Phoenix

Phoenix

Presentation Roadmap*

- Field operations summary
- Filter dichot PMc...
 - gravimetric mass and species versus paired FRM
 - collocated precision
 - mass closure
 - XRF attenuation corrections
 - biomarkers
 - carbonate
- PMc mass climatology from TEOM data
- Draft recommendations

^{*} This presentation does not include all of the data analyses conducted; final project report to be submitted April 2013.

Field Operations

- Sample Completeness
 - PHX: >90% for all samplers
 - Shaken down at RTI prior to deployment
 - Had backup hardware
 - STL: >80% for three samplers
 - Not shaken down prior to deployment
 - One dichot returned for repair (large data gap), resulting in 66% completeness
- Most common problem filter advance error
- For speciation by paired samplers, need simultaneous valid samples

Gravimetric Mass

Gravimetric Mass

Possible explanations for dichots biased low

- PM₁₀ inlet bias (dichot versus FRM)
- Dichot virtual impactor performance
- Particle losses
 - Shipping and handling
 - Filter exchanges in the sequential dichot sampler
- Sequential dichot samplers deployed in PHX and STL were <u>not</u> Federal Equivalent Method (FEM) designated
 - FEMs not available from vendor in time for study
 - Subsequently modified to be FEM compliant
 - Modest follow-up pilot study at RTP to evaluate performance

Dichot Collocated Precision

PHX PMc...
gravimetric mass 12%
silicon 12%

STL PMc...

Similar collocated precision as PHX, but more influenced by bias

Dichot: Covariance of Measurement Error (PHX)

For dichots A and B...

 $\Delta(\text{species } k) = \ln(C_{k,A}/C_{k,B})$

Dichot: Covariance of Measurement Error (PHX)

For dichots A and B...

$$\Delta(\text{species } k) = \ln(C_{k,A}/C_{k,B})$$

- At most weak correlation between measurement errors for fine and coarse fractions
 - PMc covariance of measurement error likely not driven by virtual impactor performance

Dichot Mass Balance Closure

- Measurements
 - Teflon filter
 - Gravimetry → Elements (XRF) → Ions (IC)
 - Quartz filter
 - Elemental carbon [EC] and organic carbon [OC] (TOA)
- Mass reconstruction for <u>Teflon filter</u>
 - Soil oxides ("IMPROVE" equation)
 - Anions nitrate; sulfate; chlorine (not chloride)
 - Lumped Cations ammonium; potassium; sodium
 - Carbon EC; OM = OC×1.6
 - Carbon from front quartz filter only
 - Initial estimate of the OC multiplier
 - PMc adjustments for fine PM intrusion using front filters only

Mass Balance Closure

Dichot Mass Balance Closure

ratio of means (using OM = $1.6 \times OC$):

STL 0.94 1.01

PHX 1.14 1.13

Reconciling Gaps in Mass Balance Closure

- Assume all estimates are accurate except OM/OC ratio
- For each site and size range, find best-fit OM/OC ratio assuming OM/OC ratio is constant

consistent with 1.81 reported by Bae et al. (2006)

consistent with 1.25 reported by Simon et al. (2011)

Reconciling Gaps in Mass Balance Closure

- Assume all estimates are accurate except OM/OC ratio
- For each site and size range, find best-fit OM/OC ratio assuming OM/OC ratio is constant

wide range of plausible OM/OC

minimum for OM/OC = 0.6, implausible (OM/OC < 1)

Dichot Mass Balance Closure – PHX PMc

- Reconstructed mass systematically greater than gravimetric mass
- Cannot reconcile by adjusting OM/OC ratio
- Overestimation of crustal contributions?
 - Assumed oxide forms of crustal species?
 - Overcorrecting for XRF self-absorption by light elements (e,g. Al, Ca, Si)?

XRF Attenuation Corrections

- Self-absorption (attenuation) during XRF analysis
 - Primarily affects light elements (Z ≤ 20), including Al, Si, Ca
 - Depends on element and size distribution
- Attenuation-corrected mass loadings, m_i

$$m_i = \frac{m_{no\,corr,i}}{A_i}$$

where $m_{no\ corr,i}$ is the XRF instrument-reported mass loading and A_i is the attenuation factor, range $A_i \le 1$

 RTI applied XRF attenuation factors using software developed by Kellogg (2005)

XRF Attenuation Corrections

attenuation factors

impact on crustal PMc

- PMc attenuation correction nearly 100% for Al to 15% for Ca
- Correction increases PMc soil oxides estimate by 50% (IMPROVE equation) compared to uncorrected data

Preliminary Evaluation of Correction Factors

- Analyze filters from 18 sampling events (10 PHX, 8 STL) by ICP-MS at RTI
- ICP-MS measurements confounded by elements present in filter support ring and adhesive

uncorrected data

ICP-MS blank correction and best-fit XRF A_i

• Applied $A_i = 0.51$, best-fit $A_i = 0.73...$ reported [AI] biased high?

Preliminary Evaluation of Correction Factors

- Several potential confounders
 - Blank correction of ICP-MS data (elements in filter support ring and adhesive)
 - Recovery correction of ICP-MS data
 - Small data set

element	A (RTI)	A (best-fit)	
		100% recovery	recovery adjusted
Aluminum	0.51	0.73	0.63
Sulfur	0.85	0.87	0.87
Calcium	0.86	0.91	0.91

Comprehensive evaluation is needed

PMc Biomarkers

- February May 2011 (N = 28 for PHX, N = 26 for STL)
- Sample analysis by RTI
- Protein by Molecular Probes® NanoOrange® Protein Quantitation Kit
- (1-3)-β-D-glucans by Glucatell® assay

Carbonate (CO₃)

- PM_{2.5} CO₃ low at IMPROVE sites (Chow & Watson, 2002)
- Measure CO₃ on subset of samples
 - Thermal-optical analysis with acidification (DRI)
 - CO₃ ≤ MDL for FRM PM_{2.5} and dichot PMf
 - Dichot PMc carbonate
 - Collocated precision 22% (N = 12)
 - No bias compared to FRM PM_{10-2.5} (N = 6)

Site	N	Mean, μg/m³ (% of PMc mass)	Range, μg/m³ (min, max)
PHX	43	1.2 (6%)	(0, 5.2)
STL	26	1.3 (12%)	(0, 4.0)

PMc Carbonate

- PHX correlated with most species, best with Ca (r = 0.85)
- STL uncorrelated with Total Carbon, best with Ca (r = 0.97)

dichot PMc carbonate versus dichot PMc calcium

Carbonate can explain ~2/3 (~1/2) of the calcium in PHX, ~2/3 (~2/3) of the calcium in STL

FDMS TEOM vs. Filter-Based PM Mass

Filter PM_{2.5} bracketed by TEOM nonvolatile PM and total PM

Filter PMc vs. TEOM PMc

- good agreement in STL
- TEOM biased high in PHX

PMc is largely nonvolatile

PMc Diurnal Profiles from FDMS TEOM

Anthropogenic influences at both sites, especially strong at PHX

Draft Recommendations

- The dichot is attractive compared to paired FRM samplers
 - Further evaluation of Thermo 2025D sequential dichot
 - Performance of FEM model
 - Field operations experience from other users
 - Paired dichots one with Teflon, one with quartz
- Sample analyses
 - Gravimetric mass
 - Elements by XRF but need to evaluate attenuation factors for key crustal species (Al, Ca)
 - EC/OC and carbonate by thermal-optical analysis
 - lons only in cases where PMc nitrate is expected

Disclaimer

This analysis has not been subjected to review and approval by the United States Environmental Protection Agency. No endorsement should be inferred.